If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+24x-272=0
a = 16; b = 24; c = -272;
Δ = b2-4ac
Δ = 242-4·16·(-272)
Δ = 17984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17984}=\sqrt{64*281}=\sqrt{64}*\sqrt{281}=8\sqrt{281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{281}}{2*16}=\frac{-24-8\sqrt{281}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{281}}{2*16}=\frac{-24+8\sqrt{281}}{32} $
| 9c/7-6c=15 | | -4(2y-5)-y=-2(y-3) | | -16+4x=-32 | | 44+7x=77 | | 3x+2x=50-x | | 5x-2(x+3)+4=2x+3 | | 4x-2(x+3)+4=2x-2 | | 5x-3/5=5 | | 4x-2(x+3)=2x-6-5 | | 4x-2(x+3)=2x-6+5 | | 3/2x-4=1 | | 5x+2=81 | | 4x-2(x+3)=2x-6 | | 5=((106-x)/7)-5 | | 5=106-x/7 | | 2t+5=3t-6 | | x/3+50=90 | | X^2+y^2=90000 | | X+3/3=y+2/2= | | 4x-6=10÷3 | | 5m^+9m-80=0 | | 6y-8=8y-8 | | (2/x)-(2/5)=(1/x)+(11/10) | | 2x+5x=–14 | | (3x-2)/5÷3=(4x-1)3 | | (3x+5)/4=2x-5 | | (2x-3)/3=x-3 | | I/2(4x-10)+5=x-11 | | x-x^2+x=99 | | 57=4t-13 | | |6x+3|=|2x-8| | | (5)^x=125 |